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ABSTRACT

A simple practical numerical method for estimating the wave
resistance and the wave pattern of a ship operating at low Froude number
is presented. The method is based upon approximating the two-fold
integral over the ship-hull surface involved in the usual basic expression
for the far-field wave-amplitude function by a one-fold integral around
the ship mean waterline.

ADMINISTRATIVE INFORMATION

This study was funded under the David W. Taylor Naval Ship Research and Development

Center's General Hydrodynamics Research program, Program Element 61153N, Project Number
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INTRODUCTION

A numerical method for evaluating the near- and far-field wave potential and the wave resistance

of a ship advancing with constant speed in calm water within the theoretical framework of the

Neumann-Kelvin theory developed in Noblesse [I] was recently presented in Barnell and Noblesse [2].

The numerical results obtained in the latter study show that a very large number of panels must be used

for approximating the ship-hull surface for small values of the Froude number. The numerical method

presented in [2] therefore becomes less practical at small Froude numbers, as is indeed noted in the

conclusion to [2].

A complementary numerical method useful for small values of the Froude number is presented in
I,

this study. The method is based upon approximating the two-fold integral over the ship-hull surface

involved in the usual basic expression for the wave-amplitude function by a one-fold integral around the

ship mean waterline.

The low-Froude-number numerical method presented in this study can be further simplified and -

rendered more efficient by using an analytical approximation for the one-fold integral around the ship

waterline obtained here. This analytical approximation, valid for sufficiently-small values of the Froude

number, is presented in Part 2 of this study. Numerical applications will be presented in Part 3. p

4.

*A complete listing of references is given on page 17.
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BASIC EXPRESSIONS FOR THE FAR-FIELD
WAVE-AMPLITUDE FUNCTION

This study considers the steady potential flow due to a ship advancing with constant speed in

calm water of infinite depth and lateral extent. Nondimensional coordinates _" = X/L and flow

variables are used, with the length L and the speed U of the ship and the density Q of water selected for

reference. The mean free surface is taken as the plane z = 0, with the z axis pointing upwards, and the

x axis is chosen in the ship centerplane and pointed towards the bow.

Equations (42) and (32) in [1 yield the following expressions for the nondimensional wave

resistance r -= R/QU 2L2 and the nondimensional velocity potential 4 -/UL far behind the ship:

r r= K(t) (1)dt,
fo

j Im[E +(t;k) + E (t;j)l K(t) dt, (2)
0

where E , (t;T) represents the exponential function

E,(t;4) exp[v2p{p+i(±tr)}J]; (2a) S.

Furthermore, p is defined as

p = (I +t2)1 /'2,  
(3)

i the inversr of the Froude number, that is

1 , (4)
a.

and Kit) represents the far-field wave-amplitude function defined by equation (36) in [1].

The luncilion K(t) may be expressed in the form

Kit) - K (t) + K It), (5)

ws herc the iunct1ioni K ±(t) are given by

K It) .E (nx 2 +tX-t-nty+d+iv 2p+) t y dl

j V
2 J exp (v2p2z) LE p(n + v2p 24n ±da. (6)

3 . . . . . . .. . . . . . . . . . . ..-- ..-- -.* * ..-
a... .~.....................a . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .



In this equation, E ± represents the exponential function

E ± = exp [-iv2p(x ± ty)]; (7)

Furthermore, c and h represent the positive halves of the mean waterline and of the mean wetted-hull

surface, respectively. The unit vector tangent to c and pointing towards the bow is denoted by t(tx,tyO),

and nnx,ny,nz) is the unit vector normal to h and pointing into the water, as is indicated in figure 1.

The term n± is defined as

n ± = -n z + i(nX ± t ny)/p. (8)

Also, dl and da represent the differential elements of arc length and of area of c and h, respectively.

Finally, +-+(x) represents the disturbance potential at the integration point x on c or h, +t represents the

derivative of + in the direction of the tangent vector t to c, and +d is the derivative of + in the direction

of the vector n xt, which is tangent to h and pointing downwards as is shown in figure 1.

For large values of v, or more generally of vp, the exponential function exp(v2p2z) in the hull-

surface integral in equation (6) vanishes rapidly for negative values of z. Therefore, only the upper part

of h yields a significant contribution and the hull-surface integral can be approximated by a line integral

along c in the low-Froude-number limit. This low-Froude-number asymptotic approximation of the far-

field wave-amplitude function in terms of a waterline integral is obtained in the following section.

rtz

Figure 1 - Definition Sketch for a Single-Hull Ship with
Port and Starboard Symmetry
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LOW-FROUDE-NUMBER APPROXIMATION TO THE FAR-FIELD
WAVE-AMPLITUDE FUNCTION IN TERMS OF A WATERLINE

INTEGRAL

The mean waterline c can be represented by the parametric equations

x = xo(A) and y = y0(A), (9a,b) %

where the parameter A varies between its bow and stern values, that is A, A AS. In the vicinity of c,

the hull surface may then be represented by the parametric equations

x = xo(A) + x1(.)z + x2()z 2 + (10a)

y = Y0M + y I(A)z + Y2(A)z2 + (10b)

where AB!=AAS and z:0.

Equations (7) and (10a,b) yield

exp(v 2p2z) E t = E0 ± exp[v2p 2(! -iyj ±)z]

*expf -iv 2p 2(Y2 ±z2 + 3±z3 + )J, (11)

where E0± represents the exponential function

E0± = exp(-iv2p 2yo±), (12)

and y, ±, n--0, is defined as
Yn= (xn±tyn)/p. (13) "

The Taylor series of the exponential function exp[ -iv 2p 2(y2 ±z2 + Y3 ± z3 + • . )] is

exp[- iv2p 2(y2 ±z2 +y 3 ±z 3 + . . • )I =

iv2p2 y2 ±

-v 2p2z 3 [iy 3± +v 2p2z(y 2 ±) 2/21 + . . . (14)

The parametric representation (10a,b) of the hull surface yields

-i da = i- dA dz, (15)

where the normal vector m to h is given by

m ×aA) X (Ox/Oz). (15a)

Equations (10a,b) then yield

=m io + in1z + 2 +.... (16)

5
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where the vectors im have components

m = (mnX, maY, mnZ)

given by

mnX = Yn', mnY = -Xn', (Il6a,b)

maz = X0' Y1-Yo' x1, (16c)

m z = xI' y y' xI + 2(xo'y2-Yo'X2), (16d)

m 2z = X2' YI-Y2' xI + 2(x'Y 2-y1 'X2) + 3(xO'y 3 -Yo'x 3)
•  (16e)

In equations (16a-e), and hereafter in this study, the superscript ' denotes differentiation with respect to

A. Thus, we have xn' = dxn(A)/dA.

The potential *(A,z) on h in the vicinity of c may be expressed in the form

+=+O() + 4+(A)z + +2(A)z2 + .... (17)

Equation (15) yields

(nx+v
2p24n±)da = (mx + v

2p 24m2)dAdz, (18)

where we have

m ± = -m z + i(mx±t mY)/p (19)

in accordance with equation (8). By using equations (16) and (17) we may obtain

m x+v
2p24m± = v~p24 0Mo±

+ tmox+v2p 2z (+omi± ++Imo±)

+ z[m 1X + v2p 2z(+o 2 ± + +imI ± +42mo±)] + .... (20)

where we have

M n  = nz + i(mnX t mnY)/p. (21)

Equations (20) and (14) then yield

(mX + v
2p2+m ) exp[ -iv 2p 2(y2 ±Z

2 + Y3 ±z 3 + " • "

v2p24mo ± + FI± + zF2 ± + .... (22)

where we have

Fj± = mox + v2p2 z(+om ± + +mo) "

- iv4p4z2+(0 O ± Y2 (22a)

6
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F 2 ± = mIX + v2p 2z(+om2 ++ImI t ++ 2 mo -i moXy 2±) JR

- iv4p4z 2 [+o(m 1 ±Y2 ± +mo±y 3±)++I 0
o ±y 2 ±

- v6p 6Z3 + om ± (Y2:±) 2/2. (22b)

Equations (11), (18) and (22) yield A

exp(v 2p 2z) E± (nx+v 2p2+n ±) da =

Eo0 t(v 2p24pm0 ± + F1 ± +zF 2 ± + ) exp[v2p 2(l -iy ±)z] d. dz.

We then have

fxp(v2p2z) E±(nx+ v2p2n±)da = Eo±I ± dA, (23)

where I ± represents the integral

I0
I ± = (v2p 240m0 ± + F1  +zF 2 ± + . . . )exp[v 2p 2(l -iy ±)zl dz. (24)

The lower limit of integration in the integral (24) may be taken equal to - o. We have

f zn exp[v2p2(l - iy, ±)z] dz = )nn' F2n + 2q2n + 2(u ±)n + I, (25)

where q and u t are defined as

q = I/p = ( +t 2) - 1/ 2, (26)

u = /(1 -iy±) = [1 -i(x 1 ±ty)/p] - 1. (27)

Equations 13) and (13) were used in equations (26) and (27), respectively. By using equations (22a,b) and

(25) in equation (24), we may obtain

I u , 0 m 0
t + F 2q 2 u±GlI + F 4q 4(u±) 2G 2 ± + .... (28)

where Gi -7 and G., t are defined as

G I yo' - u± (+omI ± + 1mo
±) - 2i(u t)2 m0 Y2 5, (28a)

( ± + m + mo ±  51

+ 6iu)2j+O(m 1 y2 +tnooy) + Y2

-- 12(u ±)3 +omo±(y 2 ±)2. (28b)

7



Equations (17) and (10a,b) yield

*(Xo+XlZ+ .... ,yO+Y Z+ .Y . . ,z) =

+(xoyoO) - +1z + ..

By expanding the potential in a Taylor series about the point (x0,y0,O), we may then obtain

1= XI+X + YI+y + *i' (29)

where +x, +,, +, represent the derivatives of + with respect to x, y, z. We have .

+x= W' (+nn++tt++dxT),,

where represents the unit vector along the x axis, and +n is the derivative of in the outward normal

direction n to I. "'e then have

[I\ +,) txt - nzty+d" (30a)

We ma, similaik obtain

Ifnl + ty1 + nztx, d, (30b)

+ / n,.A - (nixty - nytx)#d. (30c)

Let D be defined as

D) - Ixrt t~il\ + (Xlty,-yltx)n, .  (31)

Lquation, (29), (30a,b,c) and (31) then yield

1 ) (Nit\ f N'110 +tt - +'t ,

\,here the relation , n, + y ny + n, - n. a(A,z)/az 0 was used. We then have
l 2 t , , + iv2p+ 4nx2 + +,nty/D

0 P i\, l *, t\f.+Vl~tv/DI t. (32)

)n thc mt.an t aterline we have z =0; equations (15), (16) and (16a,b,c) then yield

) 1 2 (33a)

It \1 l) ( + E" 2)1/2, (32b)

, I (2)1 2, (33C)

Shere u L1d t M dtte.'t Cd as

tt [X ' ) 2  F 3)'1] / 2,  (34)

I  "u (35)

8
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Furthermore, we have

* +0' (36)

dl = u dA, (37)

tx = - x O' /u, ty = -Yo'/u, (38a,b)

+t = - +0' / u ,  (39)

' where +o' = d+o(A)/dA. Equations (32), (31), (33a,b,c), (34), (35), (36), (37), (38a,b) and (39) then yield

2+ txt - + iv2p+)ty dl = - ly O' dA, (40)

where I is given by

I = iv 2pdo + HI/u2(1 +- 2) (41)

with H1 defined as

H I = (yo') 2 + EYo'UlI

+ [(1 + r 2)xO- yo'(xixo'+ylyo')/u] 0 '. (42)

Equations (40), (7), (9a,b), (12) and (13) then yield

JE (nx2 + tx+t -nztYd + iv2p+)ty dl

c

f ASJ E 0 1y 0 ' dA. (43)
AB

Equations (6), (23) and (43) yield
BAS 

"

K(t) = E+A ± dA, (44)
AB

where A is given by

A+ = v21 -ly 0 '. (45)

By using equations (28) and (41) in equation (45), we may obtain

A + = v2(u mo± -ipyo')+o-yo'Hi/u 2(l +E2)

+ q2 u ,G I + F2 q4(u ) 2G2 ± + .... (46)

9



Equations (27), (21), (16a,b,c), (13) and (3) yield

u±mO±-ipy0 ' = :Ti(xO'±tyo')(t/p :iyl)u±.

Equations (12), (13) and (26) then yield

v2E 0±(u ±mo± -ipyo')+O = ±q[Eo±(tqF iyl)u ±+o]'

T- qE 0 ± [(tq:F iy)u ±o]', (47)

where the superscript ' denotes differentiation with respect to the parameter A. By using equations (45),

(46) and (47) in equation (44) we may obtain

K+(t) = _q[Eo±(tqTiYj)U±o
S As

AB '

+ q2 dAEo adA, (48)
AB

where a, is defined as

a.,. = u a,± + F2q2(u±)2G2 ± + (49)

with a, ± given by

a,± p[(tqliyl)u±+0 '/u ±

_ p2yO'H 1/u 2(l + 2)u ± + GI + . (50)

At the bow, we have y =0 for z!O; equation (lOb) then shows that we have yn(A)=0 for A=AB

and n O. Equations (12), (13), (26) and (27) then yield

+ qot (I q iy i)u o = -+ tq 2[exp( - iv2pxo)]+o/(l - iqx 1)

for A=AB. Equation (5) then shows that the contribution of the first term on the right side of equation

(48) to the function K(t) is null for A=AB. The contribution of this term clearly is also null for A=As in

the usual case of a ship with a closed stern. For a potential-flow-model involving an open-stern ship-

and-wake extending to downstream infinity we have +0-0 as x--oo, and the first term on the right side

of equation (48) therefore also vanishes for A=As. Equations (5) and (48) then yield

K(t) =qd (E0+a+ +E 0 adA. (51)

l0

- - - . . .. - - . - -



By using equations (42), (28a), (13), (27), (35), (21) and (16a-d) into equation (50) we may obtain,

after some algebraic manipulations

aI =y 0 'A+/(I+E2) + 2q(x 0' ±tyo')(u) 2B+ 0

+ C± o, + uDt+ /(l +E2) + ip(y 1+0 ' -y 0 '+1), (52)

where A ±, B ±, C ± and D ± are defined as

A = [(1 +py 0 '/u)(l -pyo'/U)+E21 + i(py0 '/u)[Y(x 0 ' ±ty0 ')/u +E], (53a)

B q(y 2Ttx2) + i(YIX 2 -XlY 2), (53b) r

C = [(=t-p 2Xo'y 0 '/u 2)+((yo'/u) 2 (xiXo' +ylYo)/u(1 +E2)]

+ i[y(Xo' ±ty0 ')/u +EJ[px 0 '/u -(pyo'/u)E(x xo' +yly 0 )/u(l +E2)], (53c)

D±= [(xo' ± tyo')/u][(I + )(yI ±iqt)u ± + i(pyo'/u)y 1 ]

- (PYo'/u)E(Pyo'/u - iE). (53d)

In the particular case when xo' ±tyo ' = 0, equations (3), (34) and (35) yield pxo'/u = -t,

pyo'/u= ±1, (x jxo' + y lYo')/u= -q(tx I =F y 1 ) and £ = q(ty x 1). Equations (52) and (53a,c,d) then yield '
al ± = ± [iYo' + (PYl J:Pit)+o' :F U+ ]/(I ± i)

+ ip(Y1+0 ' -Yo'+ 1 ) if x0' ±ty0 ' = 0. (54)

Furthermore, if the hull surface intersects the free-surface plane orthogonally at the point (xo,yo,0) of

the waterline for which xo' ±tyo ' =0, we have nz=0. Equation (33c) then yields E=0 and equation (54)

oecomes

a I ip(y1+0 ' -yo' 1 ) if x0 ' ±tyo' =0andn,=0. (55)

Equations (38a,b), (39), (29), the identity +t = txx + tyy, and equation (35) yield

(Y l1+ '  - Y O ', + ) / =Y -+ +  ty~ z. .

Equation (55) then becomes

a I =iF2pyo'+n if xO ' ± tyO' = 0 and n, = 0. (56)

Equations (49) and (56) then show that the amplitude function a± in equation (51) is of order F2 at a

point (x0,yo,0) where the phase of the exponential function Eo± = exp[-iv2p(x0 ± tyo)j is stationary,

that is where xo' ±tyo ' =0, if the hull intersects the free-surface plane orthogonally at that point.

O.
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SUMMARY OF RESULTS

The mean waterline is represented by the parametric equations

x =xo(A) and y = yo(A), (57)

where the parameter A varies between its bow and stern values, that is

AB-- "dA AS. (57a)

In the vicinity of the mean free surface, the hull surface is represented by the parametric equations

X =X(A) + XI(A)Z + X2(A)Z2 + ... (58a)

y =y 0( A) + yI(A)z + y2(A)z2 + ... (58b)

where B A :A- As and z e 0. (58c)

The velocity potential +(A,z) on the hull surface in the vicinity of the plane z= 0 likewise is expressed in

the form

+==O(A) +1(A)Z + +2(A)Z2 + .... (59)

Differentiation of the functions x,(A), Yn(A), +n(A) with respect to the parameter A is denoted by the

superscript '; thus, we have x0 ' = dxo(A)/dA.

For sufficientl% small values of the Froude number F, the far-field wave-amplitude function K(t)

is given by the one-fold integral

K(t) = q2 f ' (Eo + a+ +E 0 -a )dA, (60)

%.here we have

q - p I tl+t 2)1/ 2, (61)

and I-) and a. are the exponential function and the amplitude function defined below. The '.

exponential tunktion Eot is given by

eo exp[ - iv2p(xo± tyo)l, (62)

where v is the inverse of the Froude number, that is

v I/F. (63)

12
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The amplitude function a ± is given by

±= u~al± + F~q2 (U ±) 2 ± + . .(64)

where u t is defined as

ut= 1/[1-iq(x1 ±ty1 )J, (65)

and the functions a1I ± and a2 ± are now defined.

The first-order amplitude function a ± is given by

a yO'A +/(1+E 2) + 2(oI±tO1( )B±+

+ Ct+,+ uD I /(1+ F2) + ip(y 1+0'-Y0' 1), (66)

where we have

U =(O) + (y0')
21 1/2, (67)

C (y0'x1-x0
1 y1 )/U, (68)

* and the coefficients A ± , B ± V C ± and D . are defined as

* A, = [(l+py 0 '/U)(1-py 0 '/U)+E 2 ]

+ i(pyo' /u)[y (xo' ± ty0
1)/u + , (69a)

**B~ = q(y 2 TtX2) + i(YIX 2 -XIy 2), (69b)

* C+ = [(;-t-p 2X0 'y0 '/u 2 ) + (pyo'/u)2t(xlx0 ' +yly0 ')/U(1 +E2)I

+ i[y 1(x0 ' ±tyo')/u +EJI~pxo'/u -(py 0'/u)(XX 0 ' +y~y 0 ')/u(l +E2)), (69c)

*D, =[(x0 ' ±tyo')/u][(l +t 2)(y 1±iqt)u± +iOpyo'/u)q 1Il

-(PY 0 'IU)4(py' /U -it). (69d)

The seconid-order amplitude function a2 ± is given by

a2 ± = -y 1 ' + 2u±(+OM2 ± + 1m1 ± ++2M0 ± iy0 'Y2 ±)

+ 6~u+2 [4(m±Y2 ± +mo'y 3 ±)++MO±y2 ±1

-12(u ±)'+OtnO±(y2± )
2 , (70)

where we have

Y± =q(xn ± tyn), (71)

mn M =i+ iq(yn'-Ttxn'), (72)

13
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with

U, = Eu, (72a)

MiI = xlyl' -YlX l ' + 2(x2YO' -Y 2x0 '), (72b)

142 XlY 2 ' -Y IX2 ' + 2(x 2yI' -y 2xl') + 3(x3Yo' -y 3xo'). (72c)

At a point where the phase of the exponential function E0 ± is stationary, that is at a point

(x0 ,yo,0) where we have x0 ' ± ty o ' = 0, the first-order amplitude function a1 ± takes the form

a1 ± = +Efiyo' +(pyl ±it)o' w:u+1 ]/(1 ±i) + ip(yl o ' -Yo',+)

if x0 ' _±ty o ' = 0. (73)

Furthermore, if the hull surface intersects the plane z =0 orthogonally at a point of stationary phase we

have

a t  z= iF 2py 0 '+xx ifx 0 ' ±tyo ' = Oandnz= 0, (74)

and the amplitude function a ± then is of order F 2.

The low-Froude-number approximation (60) for the far-field wave-amplitude function is well

suited for numerical evaluation, as is shown in the next section. An analytical approximation to the

integral (60) may also be obtained by taking advantage of the rapid oscillations of the exponential

function E0 ± in the low-Froude-number limit. This analytical approximation is presented in part 2 of

this study.

[or s ufliciently small values of the Froude number, it may be acceptable for practical

applications to approximate the velocity potential by its zero-Froude-number limit, in which the free

surface becomes a rigid flat wall. This simple approximation for the potential, together with the low-

Froude-number approximation for the far-field wave-amplitude function obtained in this study and the

well-known integrals (1) and (2) defining the wave resistance and the far-field potential, provide a

simple practical numerical method for estimating the wave resistance and the wave pattern of a ship

operating at lo\ Froude numbers.

14 4

.



,

NUMERICAL EVALUATION OF THE LOW-FROUDE-NUMBER APPROXIMATION TO THE C

FAR-FIELD WAVE-AMPLITUDE FUNCTION

The functions Xk(A) and yk(A), where k =0-3, in equations (58a,b) can be determined numerically

by considering the four waterlines z = -kd, where k = 0_3 and d is sufficiently small in comparison

with the (nondimensional) ship draft d (= D/L); for instance, d might be taken equal to d/10. Each of

these four waterlines can be subdivided into an equal number, say n, of segments. The set of 4(n + 1)

nodal points (Xjk, Yjk, - kd), where j = 1-(n + 1) and k =0-3, define n + 1 constant -A lines A=A, in the
AI.

parametric representation (58ac) of the upper hull surface. For a given value Aj of A corresponding to

any one of these constant - A lines, the values Xk(Aj) and yk(A) of the four functions

Xk(A) and yk(A), where k = 0-3, can be determined by fitting cubic polynomials through the points

(Xjk, - kd) and (Yjk, - kd), respectively, for k = 03. Specifically, the cubic approximation to the

function x(Aj,z) takes the form

x(Aj,z) a xj0 + (xj 0 -- Xj )(zl/) + (xjo- 2jl + xj 2)(z/d)(I + z/6)/2

+ (xjo - 3xjI + 3xj2 - Xj3)(z/6)(I + z/6)(2 + z/d)/6.

A similar cubic approximation may be defined for the function y(Aj,z). The values xk(Aj) of the

functions Xk(A) in equation (58a) corresponding to the foregoing cubic approximation to the function

x(Aj,z) then are given by

x0(Ajj ) = xj 0, (75a)

x 1(A) = ( lxj0o- 18Xjl +9Xj 2 -2xi 3)/6d, (75b)

X2-(A. j ) = (2x j0 - 5XjlI + 4x j2 - Xj3)/262, (75c)

x3(Aj) = (xj 0 - 3xjl + 3xj2-xj 3)/663. (75d)

The values yk(Aj) of the functions yk(A) in equation (58b) are defined in terms of the y-coordinates Yjk of

the nodal points by similar expressions.

The values +k(Aj) of the functions +k(A), where k = 0-2, in equation (59) can be determined in a

similar manner by fitting a quadratic polynomial through the points (+jk, - kd), where k = 0.2 and +jk

represents the value of the potential + at the nodal point (Xjk, Yjk, - kd). This quadratic approximation

11
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is given by

+(Aj,z) - o + (+jO-+j 1)(z/d) + (+jo-2+jI ++j 2)(z/d)(l +z/d)/2.

The corresponding values +k(AJ) of the functions +k(A) then are given by

+o(Aj ) = +jO, (76a)

+ = (3+jo- 4+j + +j2)/2d, (76b)

+2 (A') = (+jO - 2+jI + +j2 )/2d2, (76c)

The values +k(Aj), where k = 0__2, and the values Xk(Aj) and Yk(A), where k =0__3, determined in

the manner explained above for a set of n + 1 values Aj of the parameter A can be used as base-values for

determining the functions +k(A), Xk(A) and yk(A) for a denser set of values of A, for instance by using

cubic-spline interpolation. The integral (60) defining the far-field wave-amplitude function can then be

evaluated numerically by dividing the top waterline into a sufficiently-large number, say N, of segments

which may be treated as straight and within which the amplitude function a ± may be regarded as

constant. Specifically, the integral (60) becomes

K(t) C. q2 1 (A.j + I - A'j) (aj + lj + + aj - lj ) (77)

j=l

where aj ± represents the mean value of the amplitude-function a within the segment [AlJAJ + I], and

I ± is the integral defined as

, lf E1 ±/ exp[ -iv 2p(Oj + I ±j t 8)j dp,

with Ej and 0± defined as

Ej= exp( - iv2p6 ±) and61 ± = xo(Aj) ty(A ). (78a,b)

Likewise, we have

Ej = exp( - iv2pOj +1 ±)and Oj + I x(. i , ) . ty()(AJ 0) (79a,b)

The integral li± may readily be evaluated analytically, with the result

lI± = (Ej±+E j + I ±)/2 if O ± = 0jf (80a)

l ± -- iF 2q(Ej i ± - E)/( Oj + 
1± - o ) ifOJ- f0 0) -t (8Ob)

16
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The number of segments into which the top waterline must be divided increases as the Froude

number decreases [2]. The foregoing numerical method thus becomes less efficient as F becomes

smaller. However, it obviously is considerably more efficient to evaluate the (one-fold) waterline integral

(60) than the (two-fold) surface integral involved in the basic expression (6) for the far-field wave-

amplitude function. Furthermore, an analytical approximation to the integral (60) may be obtained by

taking advantage of the rapid oscillations of the exponential function E0 ± at small values of the Froude

number, as was already noted. This complementary asymptotic approximation is presented in part 2 of

this study.
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